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ABSTRACT WEIGHING AND CATEGORIZING OF DEBRIS

The Space Kinetic Impact and Debris Branch

has begun an ambitious program to con-

struct a fully analytical model of the

breakup of a satellite under hypervelocity

impact. In order to provide empirical

data with which to substantiate the model,

debris from hypervelocity experiments

conducted in a controlled laboratory envi-

ronment has been characterized to provide

information on its mass, velocity, and

ballistic coefficient distributions. Data

on the debris has been collected in one

master data file, and a simple FORTRAN

program allows users to describe the de-

bris from any subset of these experiments

that may be of interest to them. A sta-

tistical analysis has been performed,

allowing users to determine the precision

of the velocity measurements for the data.

Attempts are being made to include and

correlate other laboratory data, as well

as those data obtained from the explosion

or collision of spacecraft in low earth

orbit.

INTRODUCTION

Characterization of debris from hypervel-

ocity impact events is an important pre-

requisite for analytical modelling of

those events. One feature of a useful

model would be its ability to predict the

characteristics of the debris cloud pro-

duced by the impact, and this feature

cannot be evaluated without a body of

empirical data with which to compare the

analytical predictions. The Space Kinetic

Impact and Debris Branch (SKID) has con-

ducted a debris characterization program,

using hypervelocity impact debris produced

in antisatellite experiments. Our ap-

proach includes some novel ideas from

which the orbital debris community may
benefit.

SKID has characterized debris from hyperv-

elocity shots conducted at the Naval Re-

search Laboratory (NRL) and at the Uni-

versity of Dayton Research Institute (UDR-

I). Most debris comes in plastic bags of

two sizes, large and small. The large

bags contain debris that has been swept

from the floor of the impact chamber, and

include a considerable amount of extrane-

ous material. The smaller bags contain

debris recovered from the inside of the

impact target, and do not contain as much

unwanted material.

The characterization begins with the sort-

ing out of the metallic debris, from the

non-metallic debris; this is done by hand.

This provides another opportunity to re-

move extraneous material. The metallic

debris is then weighed on the microbalance

at Phillips Laboratory's metrology facili-

ty. This microbalance has an accuracy of

0.004 g. Debris particles with mass less

than I0 times the accuracy of the scale

are not weighed. The mass of the parti-

cle, as well as all pertinent information

about the shot from which it came (shot

number, impact angle, nominal projectile

velocity, projectile material), is record-

ed in a master data file.

Some debris was collected in catcher mate-

rial during the test, for the purpose of

measuring its velocity. This debris is

removed from the catcher material with

tweezers, and the distance that it trav-

elled into the catcher material is mea-

sured. This distance is used to determine

the velocity at which the particle had

travelled, using methods to be discussed

later in this paper. The mass, velocity,

and shot information are then included in

the master data file.
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CALCULATION OF DISTRIBUTION CURVES

Calculation of mass distribution curves is

performed by the FORTRAN-77 code DEBRIS.F.

The program selects the data of interest

to the user, and then generates a mass

distribution plot, which is written to a

file called DISTRIB.DAT. The data can be

plotted in two ways. In the first ap-

proach, the dependent variable is mass,

and the independent variable is the total

number of debris particles larger than

that mass. Such a plotting method is

often used in the space debris community,

for example, in References 1 and 2. In

the second approach, the dependent vari-

able is still mass, but the particles are

separated into "bins." For example, a bin

might contain all particles with mass

between 0.I g and 0.3 g. If 12 particles

are found to lie in this range, the re-

sulting data point would be (0.2, 12).

This method of plotting is similar to the

approach used by the debris hazard model-

ling computer program IMPACT [3].

DEBRIS.F also fits a straight line and a

parabola to the curve, and performs an F-

test (as described in Reference 4) to

determine if the higher-order fit is need-

ed. The least-squares coefficients and

the F-test results are written to a file

called FITS.DAT. The source code can also

generate velocity and ballistic coeffi-

cient distributions. DEBRIS.F, and the

master data file DEBDAT, are installed on

the CRAY-2 supercomputer at Kirtland AFB,

whence they can be easily downloaded onto

5%" floppy disks.

It has been noted by McKnight C5] that a

straight-line fit to a mass distribution

does not make physical sense: if the line

is extrapolated to the left, it is seen to

imply the presence of an infinite number

of infinitesimal particles. It makes more

sense for the curve to have a "knee."

Such a "knee" can be introduced with a

bilinear least-squares fit, which has been

derived as a part of this effort, and is

available alonq with the linear and Dara-

bolic fits as part of the DEBRIS.F code.

Consider the situation shown in Figure I:

a bent straight line is to be fit to a set

of data. The line is defined by four

parameters: the intercept @0, the two

slopes @I and @2, and the x-coordinate of

the break point, x 0. Consider the case in

which x 0 is given. A least-squares fit is

obtained by minimizing the residual sum of

squares SS(res), given by

Y

i

X
O

P

X

Figure 1. Definition of bilinear
coefficients

na

ss(res) : _ [Yi-(Po÷Plxi>]2
i'l

nr

÷ _ [ (Yi-Po-_iXo) -_2 (Xi-Xo) ] 2

i-n.+l

(1)

where x < x 0 for data points 1 through n s,

and nT. is the total number of data points.
This Is minimized by setting the partial

derivatives of SS(res) with respect to the

parameters equal to zero:

8 SS(res) _ @ SS(res)

aPo aPl
(2)

_ a SS(res) _ 0

Substituting equation 1 into equations 2

leads to a system of three linear equa-

tions in three unknowns:

P0
[a] Pl

P,
= [7] (3)

where [a] is a symmetric 3x3 matrix:

a11 = n r (4)

nw

a12 = nNX o + _ Xi
i-I

(s)
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nT

r'13 = -nNx o + _ Xi

l-n,÷l

(6)

n#

(7)

n T

a23= +Xo xl
i-ns÷l

(8)

nT

"33 = _ (xi_xo)2
i-nm+l

(9)

the vector [7] is defined as

[y] =

nr

I=i

n m n r

" i -ni÷l

nT

(Xi -Xo) Yi

i-nm÷l

(lo)

and n H is the number of data points for

which x Z x 0. This system can now be

solved for _0t 81, and _z" Note that this

solution requlres a "guess" for xQ, but not

for the y-value of the break point. The

FORTRAN code DEBRIS.F performs I001 bent-

line fits to a given data set, using i001

evenly-spaced guesses for x 0. The fit with
the best correlation coefficient is re-

tained.

This bilinear fit is particularly useful

for applying the bilinear exponential

model of Grady and Kipp [6]. Reference 6

proposes an equation of the form

y = Ale-St x + Aze -_x (11)

This equation cannot be fit to a set of

data using simple least-squares means; a

more sophisticated, iterative approach is

required. However, equation ii approxi-

mates the bent-line fit if the x-axis is a

linear scale, and the y-axis is a loga-

rithmic scale. Thus, the bent-line fit

can be applied to the model of Reference

6.

Figure 2 shows a mass distribution from

DEBRIS.F, with the linear and parabolic

fits employed. Data from all shots that

were characterized was combined into one

file, which is plotted here. The x-coor-

dinate is a chosen mass M. The y-coordi-

nate is the number of particles observed

to have a mass greater than M. The F-test

performed by the program indicates that
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Figure 2. Mass distribution curve.

the accuracy gained by using the parabolic

fit, as opposed to the linear fit, is

statistically significant in this case.

Figure 3 shows the same data, separated

into bins of uniform width on a logarith-

mic scale. (Bins can also be of uniform

width on a linear scale.) The x-coordi-

nate of each data point corresponds to the

center of the bin. Linear and parabolic

fits are also available with this type of

plot.

# psrtlclaaln bin
1000
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Raw Data -+- Linear Fit --J-- Parabolk: Fit

Figure 3. Sample plot with data separated

into bins

Figure 4 shows the same data, plotted with

the bilinear fit routine. At first

glance, the fit does not appear to be very

good. However, a closer look shows that

the linear scale on the x-axis leads to a
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concentration of data points near the

left-hand side of the graph. Once these

points are recognized, the fit is seen to

be quite good.

Figure 4 also shows that, when the distri-

bution data is plotted with a linear x-

axis, the resulting curve is almost verti-

cal at low values of x. For some test

data, this steepness caused numerical

stability problems in the bilinear fit

routine, which resulted in negative values

of R z for some or all of the trial fits.

These stability problems were decreased,

but not eliminated, by restricting the

range of the trial values of x 0. The

problem was solved by implementing a com-

pletely pivoted Gaussian elimination rou-

tine to solve equation 3. DEBRIS.F had

previously solved equation 3 with an un-

pivoted Gaussian elimination.
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Mass distribution plot

2o

with bilinear fit.

Figures 5 and 6 show individual plots for

all tests, using the plotting formats of

Figures 2 and 3. Figure 6 used a linear

vertical axis, due to the presence of some

zero values in the data. This format also

emphasizes the differences in the data

from the various tests. The most inter-

esting result is the considerable varia-

tion among the curves shown in these two

figures. These shots are actually quite

similar; yet, their debris distributions

are quite different. It should be noted

that, while no debris particles of mass

less than 0.04 g were weighed, this limi-

tation would not change the values given

in Figures 5 and 6; it would merely allow

the curves to be extended to the left.

Thus, the variability shown in these fig-

ures is real.
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Figure 5. Mass distribution plots

for individual tests.
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Figure 6. Individual mass distribution

plots, using bin format.

The flexibility of this approach would

also be useful in studies such as Refer-

ence 2. McKnight and Brechin determined

the linear fit coefficients for the mass

distributions of several impact events,

and fit a curve to these coefficients in

an effort to create a master equation to

describe the mass distributions of a wide

range of impact events. Using the SKID

method of cataloguing the debris, a large

body of data could be built up and easily

analyzed. Effects of varying parameters

(such as projectile mass, projectile ve-

locity, projectile material, etcetera) on

the linear or parabolic fit parameters

could be observed.

STATISTICAL ANALYSIS OF VELOCITY

MEASUREMENTS

Velocity measurements are taken using the

results of Malick's empirical study In .

Malick fired test projectiles of four

different materials at wallboard, using a
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range of known velocities, masses, impact

angles (see Figure 7), and presented par-

ticle areas.

Malick then fit a curve to his data. The

catcher
"///Z

"///A

of

path projectile

Figure 7. Definition of impact angle e

(_ABC)

resulting equation was:

1537 fv t°'8°91
V = (Z2)

m °'_3_6 (cos 8) o.5419

where V is the particle velocity in ft/-

sec, fv is a function of the projectile

density, t is the thickness of particle

board penetrated, in inches, m is the

weight of the particle, in grains, and 8

is the impact angle. The multiple corre-

lation coefficient for the fit of this

curve to the data is 0.88. Equation (12)

applies only to the case of approximately

cylindrical projectiles, for which

A = cm 2/3 (13)

fv (dlmenelonleee)
S.6

2.5

2

t.5

1

0.0 ........................................................................................................................

0 i i r i i

o 2oo 4oo _ 8oo _ooo _2oo

density (Ib/cu. ft.)

-- n! line + upper bound + lower bound

Figure 8. Power-law fit to Malick's data

fv = 41.__2 (13)
gO .6

where p is the projectile density in Ib/-

ft 3. This curve fits the common logarithms

of Malick's data with a correlation coef-

ficient of R2=0.9996. Figure 8 shows a 95%

prediction confidence interval drawn about

this curve, illustrating the reliability

of interpolations of fv made on the basis

of it. Incorporating equation (13) into

equation (12) gives

6.332xi04 t °'s°91
V = (Z4)

m°'33_6p °'6 (cos 8) 0s419

It is important to know the reliability of

velocity measurements made with Malick's

equation. A prediction confidence inter-

val for these measurements can be con-

structed, using the approach found in

Bancroft and Han. [8]

A multiple linear regression used to ob-

tain equation (14) would begin with an

equation of the form

where A is the average presented area of

the particle, and c is a constant.

Figure 8 shows the results of fitting a

power-law curve to Malick's data for fv as

a function of density. The resulting

curve is:

log V_i = b 0 + b 11ogp/

+ b 21Ogt i + b 31ogml

+ b 4log (cos8/)

(15)

where V' i is the least-squares approxima-

tion to the actual velocity V i. For conve-

nience, rewrite equation (15) as

log Vli = b o + blxzi + b2x2i

+ b_x31 + b4x4i

(16)
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where the following abbreviations are
used:

logp = x I (17)

log t :x 2 (18)

logm = x 3 (29)

log(cos8) = x 4 (20)

Now, define the matrix [C] to be the in-

verse of the matrix [D], for which

n

Dkl = _,X(k_1)IX(1_1)i (21)
i-1

where all summations are taken over all n

data points {Vi,xli,x2i,x3i,x4i}, and x is

defined as i. Furthermore, define Othe

quantity S2:

n1
S 2 - _ (logVi-logV/i) 2

n-p i-i

(22)

where p is the number of degrees of free-

dom in the model. For this case, p=5;

there are four coefficients in the re-

gression equation, plus one constant. S 2

is an unbiased estimator of the variance

of the errors of the data relative to the

least-squares fit, assuming those errors

to be normally distributed. Under this

assumption, a I00(i-_)% confidence inter-

val for Vj is given by

V/1 ± t(,/2.n_p ) S_r[C_ (23)

where

(X) = (i xI x2 x3 x4 )T (24)

and t... n " is the I00(i-e/2)% point of

Studen_i's _!distribution, with n-p degrees

of freedom. Tables of this distribution

are readily available in most probability

texts. A i00(i-_)% prediction interval is

given by
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vli ± :¢_/2,.-p_SJl +(x)T[c]{x} (2s)

Thus, it is necessary to calculate the

estimator S 2 and the matrix [C] from Mal-

ick's original data, after which the de-

sired confidence intervals can be calcu-

lated by plugging the vector {X) into the

appropriate equation.

Converting equation (14) to the MKS system

gives

where V is now measured in m/sec, p is in

kg/m 3, t is in meters, and m is In kilo-

1.108xlO 3 C °'8°91
V = (26)

m°'_Sa6p °'6 (cos 8) 0.5419

grams. With all data available from Ref-

erence 7 converted to MKS, the matrix [C]

was calculated, and, using equation (26)

as the fit to the data, the value of S was

determined to be

S = 0.144 (27)

Two facts about the data of Reference 7

are worth noting. First, the majority of

shots were fired at impact angles of zero

degrees, leaving relatively little infor-
mation on the variation of V with 8. This

is reflected in the large value of the

coefficient Css in the matrix [C], which
indicates that the width of the confidence

interval is very sensitive to 8. Second,

the highest impact velocity recorded for

valid data is about 9000 ft/sec, or about

2.7 km/sec. Malick performed some shots

at higher speeds, but considered the re-

sulting data invalid because of excessive

breakup or deformation of the projectiles.

Thus, the average velocity for Malick's

shots is probably 1.0 - 1.5 km/sec. Fig-

ure 9, a schematic of the confidence and

prediction bands about a simple least-

squares straight-line fit, shows why this

is important. The confidence band, which

is described by equation 23, is tightest

at the mean x-value of the data. Its

width varies as the square of the distance

from this point along the x-axis. Because

of the linear nature of the fit, one can

make a similar statement regarding the

variation with distance from the mean y-

value of the data. For the same confi-

dence level, the prediction band, des-

cribed by equation 25, behaves in a simi-

lar manner, but is much wider. The geo-

metrical interpretation is more complex

for a multiple regression. However,

one can say that Malick's fit is probably

most accurate for velocities of approxi-



mately 1.0 - 1.5 km/sec, and that the ac-
curacy of this method decays for values
significantly outside of this range.
Thus, it is important to have a quantl-

Y

confidence band

.........................prediction band

least-squares fit ."

//

.............. i ×
mean x-value

of data

Figure 7. Schematic of confidence and

prediction intervals.

tative measure of the accuracy of the

velocity values thus obtained.

As an example, consider the first data

point given in Reference 7. The velocity

is seen to be 966 ft/sec, or 294 m/sec.

Converting the mass, density, and thick-

ness to the MKS system, and using equation

(25), Malick's curve fit is seen to indi-

cate a velocity of 493 m/sec for this

projectile. This illustrates a difficulty

resulting from fitting a curve to the

logarithm of the velocity data: Malick's

velocity estimate is in error by almost

70%, but this results from a creditable 9%

error in estimating the logarithm of the

velocity.

Using the definitions of equations (17) -

(20), and substituting into equation (23),

a 90% confidence interval for this data

point is found to be

442m/sec _ V _ 542m/see (28}

However, a 90% prediction interval for

this same projectile, calculated using

equation (25), would be much larger:

281m/sec _ V _ 853m/sec (29)

CONCLUSION

Since the appropriate statistical parame-

ters have been calculated, one can now use

equations (23) and (25) to determine the

accuracy of any velocity prediction made

using Malick's method.

The method of creating debris character-

ization plots is very versatile. The data

file collected for this program can be

added to at any time, and the computer

code that reads it is simple and easily

modified. This flexible approach will

allow this database to be expanded and

restudied as new issues arise in debris

characterization.
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